This is unreleased documentation for Yew Next version.
For up-to-date documentation, see the latest version on docs.rs.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//! This module contains a scheduler.

use std::cell::RefCell;
use std::collections::BTreeMap;
use std::rc::Rc;

/// Alias for `Rc<RefCell<T>>`
pub type Shared<T> = Rc<RefCell<T>>;

/// A routine which could be run.
pub trait Runnable {
    /// Runs a routine with a context instance.
    fn run(self: Box<Self>);
}

struct QueueEntry {
    task: Box<dyn Runnable>,
}

#[derive(Default)]
struct FifoQueue {
    inner: Vec<QueueEntry>,
}

impl FifoQueue {
    fn push(&mut self, task: Box<dyn Runnable>) {
        self.inner.push(QueueEntry { task });
    }

    fn drain_into(&mut self, queue: &mut Vec<QueueEntry>) {
        queue.append(&mut self.inner);
    }
}

#[derive(Default)]

struct TopologicalQueue {
    /// The Binary Tree Map guarantees components with lower id (parent) is rendered first
    inner: BTreeMap<usize, QueueEntry>,
}

impl TopologicalQueue {
    #[cfg(any(feature = "ssr", feature = "csr"))]
    fn push(&mut self, component_id: usize, task: Box<dyn Runnable>) {
        self.inner.insert(component_id, QueueEntry { task });
    }

    /// Take a single entry, preferring parents over children
    #[rustversion::before(1.66)]
    fn pop_topmost(&mut self) -> Option<QueueEntry> {
        // BTreeMap::pop_first is available after 1.66.
        let key = *self.inner.keys().next()?;
        self.inner.remove(&key)
    }

    /// Take a single entry, preferring parents over children
    #[rustversion::since(1.66)]
    #[inline]
    fn pop_topmost(&mut self) -> Option<QueueEntry> {
        self.inner.pop_first().map(|(_, v)| v)
    }

    /// Drain all entries, such that children are queued before parents
    fn drain_post_order_into(&mut self, queue: &mut Vec<QueueEntry>) {
        if self.inner.is_empty() {
            return;
        }
        let rendered = std::mem::take(&mut self.inner);
        // Children rendered lifecycle happen before parents.
        queue.extend(rendered.into_values().rev());
    }
}

/// This is a global scheduler suitable to schedule and run any tasks.
#[derive(Default)]
#[allow(missing_debug_implementations)] // todo
struct Scheduler {
    // Main queue
    main: FifoQueue,

    // Component queues
    destroy: FifoQueue,
    create: FifoQueue,

    props_update: FifoQueue,
    update: FifoQueue,

    render: TopologicalQueue,
    render_first: TopologicalQueue,
    render_priority: TopologicalQueue,

    rendered_first: TopologicalQueue,
    rendered: TopologicalQueue,
}

/// Execute closure with a mutable reference to the scheduler
#[inline]
fn with<R>(f: impl FnOnce(&mut Scheduler) -> R) -> R {
    thread_local! {
        /// This is a global scheduler suitable to schedule and run any tasks.
        ///
        /// Exclusivity of mutable access is controlled by only accessing it through a set of public
        /// functions.
        static SCHEDULER: RefCell<Scheduler> = Default::default();
    }

    SCHEDULER.with(|s| f(&mut s.borrow_mut()))
}

/// Push a generic [Runnable] to be executed
pub fn push(runnable: Box<dyn Runnable>) {
    with(|s| s.main.push(runnable));
    // Execute pending immediately. Necessary for runnables added outside the component lifecycle,
    // which would otherwise be delayed.
    start();
}

#[cfg(any(feature = "ssr", feature = "csr"))]
mod feat_csr_ssr {
    use super::*;
    /// Push a component creation, first render and first rendered [Runnable]s to be executed
    pub(crate) fn push_component_create(
        component_id: usize,
        create: Box<dyn Runnable>,
        first_render: Box<dyn Runnable>,
    ) {
        with(|s| {
            s.create.push(create);
            s.render_first.push(component_id, first_render);
        });
    }

    /// Push a component destruction [Runnable] to be executed
    pub(crate) fn push_component_destroy(runnable: Box<dyn Runnable>) {
        with(|s| s.destroy.push(runnable));
    }

    /// Push a component render [Runnable]s to be executed
    pub(crate) fn push_component_render(component_id: usize, render: Box<dyn Runnable>) {
        with(|s| {
            s.render.push(component_id, render);
        });
    }

    /// Push a component update [Runnable] to be executed
    pub(crate) fn push_component_update(runnable: Box<dyn Runnable>) {
        with(|s| s.update.push(runnable));
    }
}

#[cfg(any(feature = "ssr", feature = "csr"))]
pub(crate) use feat_csr_ssr::*;

#[cfg(feature = "csr")]
mod feat_csr {
    use super::*;

    pub(crate) fn push_component_rendered(
        component_id: usize,
        rendered: Box<dyn Runnable>,
        first_render: bool,
    ) {
        with(|s| {
            if first_render {
                s.rendered_first.push(component_id, rendered);
            } else {
                s.rendered.push(component_id, rendered);
            }
        });
    }

    pub(crate) fn push_component_props_update(props_update: Box<dyn Runnable>) {
        with(|s| s.props_update.push(props_update));
    }
}

#[cfg(feature = "csr")]
pub(crate) use feat_csr::*;

#[cfg(feature = "hydration")]
mod feat_hydration {
    use super::*;

    pub(crate) fn push_component_priority_render(component_id: usize, render: Box<dyn Runnable>) {
        with(|s| {
            s.render_priority.push(component_id, render);
        });
    }
}

#[cfg(feature = "hydration")]
pub(crate) use feat_hydration::*;

/// Execute any pending [Runnable]s
pub(crate) fn start_now() {
    #[tracing::instrument(level = tracing::Level::DEBUG)]
    fn scheduler_loop() {
        let mut queue = vec![];
        loop {
            with(|s| s.fill_queue(&mut queue));
            if queue.is_empty() {
                break;
            }
            for r in queue.drain(..) {
                r.task.run();
            }
        }
    }

    thread_local! {
        // The lock is used to prevent recursion. If the lock cannot be acquired, it is because the
        // `start()` method is being called recursively as part of a `runnable.run()`.
        static LOCK: RefCell<()> = Default::default();
    }

    LOCK.with(|l| {
        if let Ok(_lock) = l.try_borrow_mut() {
            scheduler_loop();
        }
    });
}

#[cfg(target_arch = "wasm32")]
mod arch {
    use crate::platform::spawn_local;

    /// We delay the start of the scheduler to the end of the micro task queue.
    /// So any messages that needs to be queued can be queued.
    pub(crate) fn start() {
        spawn_local(async {
            super::start_now();
        });
    }
}

#[cfg(not(target_arch = "wasm32"))]
mod arch {
    // Delayed rendering is not very useful in the context of server-side rendering.
    // There are no event listeners or other high priority events that need to be
    // processed and we risk of having a future un-finished.
    // Until scheduler is future-capable which means we can join inside a future,
    // it can remain synchronous.
    pub(crate) fn start() {
        super::start_now();
    }
}

pub(crate) use arch::*;

impl Scheduler {
    /// Fill vector with tasks to be executed according to Runnable type execution priority
    ///
    /// This method is optimized for typical usage, where possible, but does not break on
    /// non-typical usage (like scheduling renders in [crate::Component::create()] or
    /// [crate::Component::rendered()] calls).
    fn fill_queue(&mut self, to_run: &mut Vec<QueueEntry>) {
        // Placed first to avoid as much needless work as possible, handling all the other events.
        // Drained completely, because they are the highest priority events anyway.
        self.destroy.drain_into(to_run);

        // Create events can be batched, as they are typically just for object creation
        self.create.drain_into(to_run);

        // These typically do nothing and don't spawn any other events - can be batched.
        // Should be run only after all first renders have finished.
        if !to_run.is_empty() {
            return;
        }

        // First render must never be skipped and takes priority over main, because it may need
        // to init `NodeRef`s
        //
        // Should be processed one at time, because they can spawn more create and rendered events
        // for their children.
        if let Some(r) = self.render_first.pop_topmost() {
            to_run.push(r);
            return;
        }

        self.props_update.drain_into(to_run);

        // Priority rendering
        //
        // This is needed for hydration susequent render to fix node refs.
        if let Some(r) = self.render_priority.pop_topmost() {
            to_run.push(r);
            return;
        }

        // Children rendered lifecycle happen before parents.
        self.rendered_first.drain_post_order_into(to_run);

        // Updates are after the first render to ensure we always have the entire child tree
        // rendered, once an update is processed.
        //
        // Can be batched, as they can cause only non-first renders.
        self.update.drain_into(to_run);

        // Likely to cause duplicate renders via component updates, so placed before them
        self.main.drain_into(to_run);

        // Run after all possible updates to avoid duplicate renders.
        //
        // Should be processed one at time, because they can spawn more create and first render
        // events for their children.
        if !to_run.is_empty() {
            return;
        }

        // Should be processed one at time, because they can spawn more create and rendered events
        // for their children.
        if let Some(r) = self.render.pop_topmost() {
            to_run.push(r);
            return;
        }
        // These typically do nothing and don't spawn any other events - can be batched.
        // Should be run only after all renders have finished.
        // Children rendered lifecycle happen before parents.
        self.rendered.drain_post_order_into(to_run);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn push_executes_runnables_immediately() {
        use std::cell::Cell;

        thread_local! {
            static FLAG: Cell<bool> = Default::default();
        }

        struct Test;
        impl Runnable for Test {
            fn run(self: Box<Self>) {
                FLAG.with(|v| v.set(true));
            }
        }

        push(Box::new(Test));
        FLAG.with(|v| assert!(v.get()));
    }
}